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A GENERALIZATION OF SYMMETRIC PROPERTY BEYOND APPELL
POLYNOMIALS

DAE SAN KIM, TAEKYUN KIM, HYUCK-IN KWON, GAWN WOO JANG, AND TOUFIK MANSOUR

ABSTRACT. Recently, Bayad and Komatsu gave characterizations of Appell polynomials by
means of symmetric property and expressed them as linear combinations of Bernoulli and Euler
polynomials. Further, they presented some interesting examples as applications. The aim of
this paper is to note that their method can be generalized to not necessarily Appell polynomials
so as to include, for example, higher-order Genocchi polynomials. Moreover, we provide several
examples that illustrate our main result.

1. INTRODUCTION

The Bernoulli polynomials B, (x) and Euler polynomials E,(x) are respectively given by the

. . n n
generating function ge™ = Y . Bu(2)h and FZge™ = ¥, o En(2)5. When z = 0,

B, = B,(0) and E,, = E,(0) are called the Bernoulli and Euler numbers, respectively.

Next, we would like to go over very basic facts about umbral calculus in order to explain main
results obtained in [2]. The reader refers to [10] for complete treatment, where the umbral
calculus has been used in numerous problems of pure and applied mathematics, for example,
see [1,3,4,7,9,10]. Let J be the algebra of all formal power series in the variable ¢ with the
coefficients in the field C of complex numbers, namely

k
T={f)=Y ay lareC

k>0

Let P* denote the vector space of all linear functionals on P, where P = C[z] is the ring of
polynomials in z with the coefficients in C. For L € P* and p(z) € P, (L|p(z)) denotes the action
of the linear functional L on p(z). The linear functional (f(¢)|-) on P is defined by (f(¢)|z") = an,
n > 0, where f(t) = > v ak% € J. For L € P*, let us set f1(t) = Zk>O<L|xk>%. Then, we
see that (fr(t)|z") = (L|z™), and the map L — fr(t) gives a vector space isomorphism from P*
to J. Thus, J may be viewed as the vector space of all linear functionals on P as well as the
algebra of formal power series in ¢, and so an element f(t) of J will be thought of as both a
formal power series and a linear functional on P. Here, J is called the umbral algebra, the study
of which in the umbral calculus.

The order o( f(t)) of 0 # f(t) € J is the smallest integer k such that the coefficient of t* in f(t)
does not vanish. In particular, 0 # f(t) € J is called an invertible series if o(f(t)) = 0 and
a delta series if o(f(t)) = 1. For f(t),g(t) € J with o(g(t)) = 0 and o(f(t)) = 1, there exists
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a unique sequence s, (r) with degs,(z) = n such that (g(t)f*(t)|zn(x)) = nlé, for k > 0,
where 4y, is the Kronecker’s symbol. Such a sequence s,(z) is called the Sheffer sequence for
(g(t), f(¢ )) Wthh 15 dented by sn( ) ~ (g(t), (). Also, it is known that sy (z) ~ (g(t), f(¢)) if
and only if Pt ( =2 k>0 Sk(@ k,, where f(t) is the compositional inverse of f(t) satisfying

f(f@) = f(f(t)) = t. Observe here that

1 _
Sp(x) ~ <m, f(t)) if and only if g(t) Zsk

k>0

In particular, s, (z) is called the Appell sequence for g(t) if sp(x) ~ (g(t) t) and

Sp(x) ~ (ﬁ, ) if and only if g(¢) Zsk

k>0

In 2017, Bayad and Komatsu [2] gave characterizations of Appell polynomials by means of sym-
metric property and expressed them as linear combinations of Bernoulli and Euler polynomials.
Further, they presented some interesting examples and applications. The main goal of this pa-
per, see Theorem 4, is to note that their method can be generalized to not necessarily Appel
polynomials so as to include, for example, higher-order Genocchi polynomials. Moreover, we
provide several examples that illustrate our main result, see the next section.

2. MAIN RESULT AND APPLICATIONS

Note that the following theorem is the first main result in [2], which states a necessary and
sufficient condition for Sheffer sequences to have the described symmetric property.

Theorem 1. (see [2, Theorem 2.1]) Let a € C, and let h(t) = g(t)e3/®. Also, we set

V(a) = {sn(2)[sn(2) ~ (m f(t)) sn(a— ) = (—1)"sn(z).n > 0},

Then V(a) # 0 if and only if f(t) is odd (f(—t) = —f(t)) and h(t) is even (h(—t) = h(t)).

In this paper, we want to pay attention to the following result which was also shown in [2].

Theorem 2. (see [2, Theorem 2.5]) Let s, (x) be an Appell sequence for 1/g(t), that is, g(t)e® =
2 k>0 sk(m)%, satisfying sp(a — ) = (—1)"su(z), for alln >0 and 0 # a € C. Let (ag)r>0 be

a sequence of complex numbers such that G(t) = g(t) — >y ak% is either odd or even. Then

we have
Y ax(p)a"FEpk(z/a), if G(t) is odd;
sn(z) = k even
! -2 ) %(kﬁl)anﬂ_anH—k(iﬂ/a), if G(t) is even.
k odd

2.1. Main result. As we said earlier, our intention here is to extend the above theorem to not
necessarily Appell polynomials so as to include, for example, higher-order Genocchi polynomials.
For this purpose, we first note the following lemma.
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Lemma 3. Let a € C, ¢ € Z. Also, we let, for any nonzero power series 0 # g(t) € J,
g(t)ert = 2ok>0 sk(m)%. Then

(1) sn(a —x) = (=1)"Ts,(x), for alln >0

if and only if g(t)e® = (—1)¢g(—t).

Proof. Note that (1) is equivalent to

> sula— x)g = (=1 snla)—

n>0 n>0
Since g(t)e™ = > 4o sk( )k!, this can be written as g(t)e(@=®! = (=1)’g(—t)e~*!, which is
equivalent to g( )ett = (—1)%g(—t), as claimed. O

The following result is a generalization of Theorem 2 that we will give several applications.

Theorem 4. For0 # g(t) € J, assume that g(t Zk>0 sp(x)s. Also, assume that, for 0 #
a € C and l € 7, we have sp(a —x) = (—1)"*s n( ) for alln > O. Let G(t) = g(t) = > i>0 ak%
(ax, € C, for all k). Then we have N

(a) If G(t) is even, then g(t) = (Zk oddak%> %1_—1 Further,

—2 Z an t(op)a™ ' “2 Bp_ok(z/a), if € is even;
(@) = iy

kz a2k+1(Qkil)an_%_lEn—Qk—l(x/a), if £ is odd,

-0

with the understanding so(x) = 0, for £ odd.
. —_1)¢
(b) If G(t) is odd, then g(t) = (Zk even Ok 3:,) % Further,

[n/2] o -
> a%( k) " B _ok(z/a), if € is even,
Sn(x) - [(n—1)/2] . § s | |
-2 kz 5 (gpe1) @22 By op 1 (x/a), if € is odd and g(0) =0,
-0

with the understanding so(x) = 0, for € odd and g(0) = 0.

Proof. Since the similarity between Cases (a) and (b), we will show Case (b) only. In view of
our assumption and Lemma 3, g(t)e® = (—1)’g(—t). Thus,

( +Zak—) =—1)8(G(—t)+2ak(_/:')k)= DG + ) ar(-1 Mt.
k>0 k>0 ’

k>0

From this, we obtain
—ed (_1)€+k tk

Ak 77,
CEISURPINE

G(t) =

147
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which in turn gives
tk

1)+ €+k ¢
g(t) = (1)—12 k' 71) akH.

6at 1 6atf 1
k>0 +( ) k even

Again, the expression for s,(z) in case of £ even is left to the reader. Assume that ¢ is odd and
g(0) = 0. Then, as G(t) is odd and g(0) = 0, we have that ap = 0. Now, we have

-2 at
xt __ xt
9()e” = @ et —1° Z T
0#£k even

=2 agk+2 mt™
T o £k 2 2k—|—1'z m(/a)a™

S n a25+2 2%k—2 n
_ - o
= 27; g <2k+1> 2%+ 2 By _ok-1(z/a) =

as required. O

2.2. Applications. On the next subsections, we will present several examples that illustrate
Theorem 4.

2.2.1. Genocchi polynomials. For r € Z~g, the Genocchi polynomials Gg)(x) of order r are given

by the generating function
t
() o - Tl

n>0

Note here that the order of g(t) = (g,?j—l)r is r. For z =0, el Qi) (0) are called Genocchi

numbers of order r. If r = 1, then Gp(z) = Gsll)(x) and G,, = G%l) are called respectively
Genocchi polynomials and Genocchi numbers. It is well known that Go =0, G1 = 1, G201 =0
for all m > 1, and Ga,, # 0 for all m > 1. Assume that g(t)e* = > n>0 sn(:v)tn—"!', for0#g(t) € J

and s, (1 — z) = (—1)" s, (z). If G(t) = g(t) — Zk>0 Gk% is even, then

tn
— t t_
s = et 3 G = et = T Gy

k odd et n>0
Thus s,(z) = Gp(x) and g(t) = ?’% In addition, by Theorem 4, we have

[(n—1)/2]

2 (2k+ 1)G2k+1En—2k—1(90),

for all n > 1.
Finally, as was observed in [2], instead of assuming that g(t) — >, -, Gk% is even, we may
assume ¢g(t) — chvzo Gk% (N € Zso) or g(t) —t is even.
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r ™) gn G ra) g
Let g(t) = (72%) =Y >0 %% Then g(t)e! = (—1)"g(—t) and g(t)e* = S so WSM)%_!'

ps
So, by Theorem 4, we obtain the following. For r even,

(@) = 2 (2 k) P LR ()

P 2k + 1
[n/2] n
= Z <2k> r”_Qngz)En_gk,(w/r);
k=0

for r odd and n > 1,

1

[(n—1)/2

G (z) = ’ o )pn2%-1g0) g (z/r)

n - % +1 2k+1n—2k—1
k=0

By _op—1(x/7).

[(n-1)/2] (r)
— 9 ), m—2k-2 Gopso
= \2k+1 2k + 2

2.2.2. Bernoulli and Euler polynomials. Let g(t) = 227 = > n>0 E, L. Then g(t)e! = g(—t).
Thus, by (a) in Theorem 4, we obtain

W FEopi1
Bale) = 23 () gy B o)

Let g(t) = #45 = Ym0 B, . Then g(t)e! = g(—t). Thus, by (b) in Theorem 4, we obtain

(n/2]
Bn(.’L‘) = Z <27,;> BQkEn_Qk(.T).

k=0

2.2.3. Bessel polynomials. The reader may refer to [5] for the details about this example. Let
the polynomials Vj, (), n > 0, be defined by the generating function

k! t2k+1 et
1

! i
¢ at _ 2k+1)! _ Vi v
T ey R A
where yg(x) is the Bessel polynomial of degree k given by
(k).
() = 3 5o/
LyBewt

In the special case of k = 1, we have —ory = > n>0 Vin(2)5. In fact, Vi, (2) = B (x)
is the n-th Bernoulli-Padé polynomial of order (k, k), see [5]. By Equation (29) of [5], we know
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that V(1 — ) = (=1)"Vin(x). So, by Theorem 4, we obtain
[n/2]
= E,
Vin() =) <2€> Vi20En_20()

=0

A Vi,2041
=2 ZZ::O (2e> 50+ 1 on2@):

T
2.2.4. Hermite polynomials. Let g(t) = (8‘2-{-1) e /2 with r > 1. Then g(t)e™ = (—1)"g(—t)

and g(t)e™ = 2 n>0 sn(2) 57 with s, () = Y, () GET)HS:)Z( ), where H(V)( ) are the Hermite

n:
p}i)lynomials with the generating function given by eut—v/2 = Zn>0 H, V)( n, Observe here
that

n n!
HY) = H(0) = (—v/2)n/? Gy for meven,
" " 0, otherwise.

Thus,

m . m Y ot A
52m(0):Z< )Gée iz :Z( g)(Q(Z ?)l)( v/2)" Gy,

=0 =

T 2m+1 ” "L 2m+ 1\ (2m — 20)! _
a0 =3 () 62 Z<2€+1)W( Ve

=0 =

Then, from Theorem 4, we have that for r even,

R 32k+1 ) k
n—2k—1
-2 Z <2k> 2%k +1 Bnax(@/7)

[n/ 2]

B I;) <2k> 52k (O)r" = Epap (@ /r);

and for r odd and n > 1,

[(n-1)/2] s2002(0) o
n—2k—2
2 2 <2k+1) % +2 Bn-ak-a(@/r)

[(n—-1)/2] n
= ; <2k+1)82k+1(0)7“"_%_1En72k71($/7°)-

,+1) cost with r > 1. Then g(t)e" = (—=1)"g(—t)

2.2.5. Two more examples. Let g(t (
and g(t)e™ =Y, 5 sn(z) 5y with s ( )= E"/O?] (2"8)(—1)56'52%(37). Then, from Theorem 4, we
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have that for r even,

L s2001(0) i
sule) =23 () et Q1 (o)
k=0

2k +1
[n/2] n
= kz;o <2k> szk(())r"_%En_gk(:r/r);

and for r odd and n > 1,

/2 s2k+2(0) ok
o n—2k—2
2 Z <2k + 1) %+2 Bnaka(@/r)

[(nfl)/Q] n
= > <2k+1)82k+1(0)7“"_2k_1En72k71(iE/T)~

k=0

Let g(t) = (—th—)Tsint with 7 > 1. Then g(t)e™ = (=1)""!g(—t) and g(t)e™ = 3", 5 sn(2) 5y

et+1

with so(z) =0 and s,(z) = L(jo_l)ﬂ] (2411)(—1)56’52%_1(9;), (n > 1). Then, from Theorem 4,

we have that for r even and n > 1,

[(n—=1)/2] sok2(0) oo
=2 X <2k+1)m’" Br-zir{e/r)

[(N—l)/2]

n n—2k—1
E E, _ok_ ;
2 <2k 1> Sok+1(0)r 2k—1(z/7)

and for r odd,

A s2k+1(0) 2k—1
2 Z (2k> k1 Bo-aw(/r)

[n/2] n
= Z <2k> 32k (0)r" 2R By _op (/7).

k=0

All the polynomials sp(x) in Theorem 4 are expressed as linear combinations of Bernoulli or
Euler polynomials. So we can find the Fourier series expansions of s, ((z)) ((z) =z —
the fractional part of x, for any real number z) from the well known Fourier series expansions
for the Bernoulli function By, ({x)) and the Euler function E,({x)), see Equations (2.8) and (2.9)
in [2]. The reader refers to [2] for the details of this idea which was used, for example, to find
the Fourier series expansions for the higher-order Bernoulli and Euler functions. For a different
and more direct way of obtaining the Fourier series expansions of higher-order Bernoulli and

Euler functions, the reader refers the recent papers [6] and [§].
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